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Abstract 

This paper reviews a formalism that enables the dynamics of a broad class of neural networks to be understood. 
This formalism is then applied to a specific network and the predicted and simulated behavior of the system are 
compared. A number of previous works have analysed the Lyapunov stability of neural network models. This type 
of analysis shows that the excursion of the solutions from a stable point is bounded. The purpose of this work is 
to review and then utili&e a model of the dynamics that also describes the phase space behavior and structural 
stability of the system. This is achieved by writing the general equations of the neural network dynamics as 
a gradient-like system. In this paper it is demonstrated that a network with additive activation dynamics and 
Hebbian weight update dynamics can be expressed tw a gradient-like system. An example of a 3-layer network 
with feedback between adjacent layers is presented. It is shown that the process of weight learning is stable in 
this network when the learned weights are symmetric. Furthermore, the weight learning process is stable when 
the learned weights are asymmetric, provided that the activation is computed using only the symmetric part of 
the weights. 

Introduction 

In studying the dynamics of unsupervised neural networks 
there are three critical issues which need to be analyzed. 
The first important issue is Lyapunov stability. It is im- 
portant to establish conditions which guarantee that the 
node activities and connection weights converge to some 
equilibrium state of the network. The second important 
issue is the way in which the network stores information. 
This involves determining the nature of the equilibrium 
states in the network. The third important issue is the 
structural stability, This property determines whether a 
model can be made into a similarly functioning device, or 
whether the model can be simulated at a different level of 
precision (e.g. 8-bit vs. 16-bit). In order to  do this, it  is 
important to  have some guarantee that small changes in 
the network parameters do not affect its general behavior. 

Addressing all three of these concerns in a general neu- 
ral network model can be quite difficult. In [Z] the first 
of these problems is addressed by proving that a class of 
networks with a general equation for the node activation 
dynamics is Lyapunov stable when the weights are con- 
stant and symmetric. As shown in [6] many neural net- 
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work models that  do not include learning can be put in 
this general form. In [lo], the aforementioned work is ex- 
tended by using a similar equation for the node activation 
dynamics to prove the Lyapunov stability of networks with 
a number of different weight update rules. A different a p  
proach, which addresses all three of the issues discussed 
above, is taken in [E]. Specifically, some properties of a 
class of dynamical systems called gradient-like systems are 
derived and then used to  explain some of the dynamics of 
the Hopfield network. We recently proposed a formalism 
[SI which extends the results in [12] by proving additional 
properties of gradient-like systems as well as allowing the 
incorporation of weight update in the gradient-like system 
formulation. 

Gradient systems are a mathematically well studied 
class of dynamical systems. For such systems, results have 
been derived to  address all three of the above concerns. 
We showed in [8] that most of the desirable properties 
of gradient systems are possessed by the more general 
class of gradient-like systems. We also demonstrated that 
many existing neural network models can be formulated 
as gradient-like systems. By contrast, few neural networks 
can be written as gradient systems. This formalism allows 
any dynamical system which can be cast as a gradient- 
like system to be analyzed with respect to  its Lyapunov 
stability, phase space behavior, and structural stability. 
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Lyapunov stability is used to determine whether most 
trajectories move toward or away from a given equilib- 
rium. If an  equilibrium state is Lyapunov stable, then any 
trajectory started in a given neighborhood of the equilib- 
rium must have a bounded excursion from that equilib- 
rium. Phase space behavior on the other hand, is used to 
evaluate the specific structure of the equilibria. The phase 
space is the space consisting of all state variables, and the 
collection of paths that the system state traverses in this 
space is called the phase space behavior of the system. 
It  shows, for instance, whether the equilibrium state is 
a point, a periodic cycle, or some more complex behavior. 
Finally, structural stability is used to demonstrate whether 
small changes in system parameters change the qualitative 
system behavior. For example, in a structurally stable sys- 
tem the position of the equilibrium states in phase space 
remain similar under small variations of the system pa- 
rameters. 

In the next section we will give a brief review of the 
formalism developed in [8] and show that it applies to net- 
works that have additive activation dynamics and Hebbian 
weight update dynamics. We will then present simulation 
results from a 3-layer feedback network which demonstrate 
the salient points of our theory. 

Review of Gradient- Like Dynamics  

A gradient-like system is one in which the time derivative 
of the states Zi is equal to the product of the gradient of 
a scalar function V ( u )  and a symmetric positive definite 
matrix P(u).  These dynamics are described by the equa- 
tion 

ti = -P(u) [v,lv(u)]. 
The function V ( u )  is a scalar function referred to as the 
gradient potential function. I t  is a mapping of the form 
V : U -+ R, where U c Iw" is an open set, which is required 
to be twice continuously differentiable. The matrix P(u) 
must be symmetric and positive definite (Le. yTP(z)y > 
0 V y # 0 )  for all values of U. 

Conceptually the function V ( u )  defines a surface in the 
phase space of the system. All of the trajectories of the 
network must move along this surface. The matrix P(u)  
specifies the "laws of motion" that the trajectories must 
obey in moving along the surface defined by V(u) .  Since 
P(u)  is positive definite for all values of U, the trajecto- 
ries always move downhill along 'V(u) (i.e. toward smaller 
values of V ( u ) ) .  If a trajectory reaches a point where the 
slope of V ( u )  is zero in any direction, then the trajectory 
remains at that point thereafter. 

This intuition was formalized in [8] through a series of 
proofs which characterize the behavior of gradient-like sys- 

tems. I t  was shown that every isolated local minima of 
V ( u )  is an asymptotically stable equilibrium point of the 
network. This does not guarantee that every trajectory 
will converge to an  equilibrium point. In order for that to 
occur the set 

n/, = (U E R" : V ( u )  5 c} 

must be compact (i.e. closed and bounded) for every c E R. 
This is guaranteed to be true if V ( u )  is bounded below 
(i.e. V ( u )  2 6 V U E an), and radially unbounded (i.e. 
V ( u )  -+ 00 as llull -+ 00). 

As the intuitive description of gradient-like dynamics 
implies, the phase space behavior of such systems is quite 
simple. Since the trajectories can only remain constant at  
the equilibrium points and must move toward smaller val- 
ues of V ( u )  at all other points, the only recurrent trajec- 
tories are the equilibria themselves. A recurrent trajectory 
is one that returns to within an arbitrarily small neighbor- 
hood of its starting point at some later time. Since almost 
all trajectories of a gradient-like system must move down 
hill along the surface defined by V ( u ) ,  almost all trajecto- 
ries end up at a stable equilibrium point or go to infinity. 
The exception to this is those few trajectories which termi- 
nate at a saddle point. Likewise all trajectories must begin 
at an unstable equilibrium point or a t  infinity. F'urther- 
more, in gradient-like systems only three types of equilib- 
ria are possible, stable points, unstable points, and saddle 
points. In the next section we will show how to formulate 
a specific neural network as a gradient-like system. 

Neural Network Formulation 

It  is often useful to employ neural network models in which 
the node activation dynamics are described by an additive 
equation, and weight update dynamics are given by the 
Heblb rule. Some of the properties of networks using these 
dynamics are presented in [I, 5, 91. These choices of net- 
work dynamics can be shown to fit into the gradient-like 
dynamics formalism. Consider a neural network with p 
nodes and m weights. The activation of the i th node is 
given by c;, and the value of the weight io  the i th node, 
from, the j t h  node is given by c i j .  Following the form 
in [lo], additive activation dynamics are described by the 
differential equation 

In this equation 1 / ~ i  is a constant which determines the 
speed at which z i  converges to its equilibrium value. The 
term -Jlizi is a passive decay term which causes 2; to go 
to zero if the remaining terms are zero. The constant A; 
determines the rate of decay. The function d j ( c j )  is the 
output function of the j t h  node, and the input to the ith 
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node is &. In equation (3) the inputs I; and the connec- 
tion weights cij may both take positive or negative values. 
Again following the form in [lo], the dynamics of the Heb- 
bian weight update rule are 

&. r j  - - -..y;.c.. j i j  +xijdi(zi)dj(zj) i i j  E (11 ... i ~ } .  (4) 

The term -7;jcij is a passive decay term where y;j is a 
constant which determines the decay rate. The constant 
X i j  determines the growth rate of the connection weight 
c;j if the nodes at both ends of the connection are active. 
The matrices containing all such constants are r and A 
respectively. 

In order to instantiate additive activation dynamics and 
the Hebbian learning rule into the gradient-like system of 
equation (I), define a state vector U as 

76 = [Zl, z2, z3, - I Z p ,  Cllr ClZr c13, * * I % p l T . ( 5 )  

Now let the gradient potential function be given by 

1 
+;jlT [ r o A - 1 o c o c ]  1. 

In equation (6) note that 1 is a p dimensional vector whose 
elements are all 1. Also the operation o denotes the Schvr 
product which is defined as [A  o B]ij = aijb;j. Since 
V(u)  must be twice continuously differentiable, the same 
requirement must hold for the output functions &(zi). 
Choose the matrix P(u) to be 

The notation A[hll, h 2 2 ,  . . . , h,,] will be used to denote 
a ( q  x q )  diagonal matrix with the listed elements along 
the diagonal. In order for P(u)  to be positive definite, the 
constants e i  and Xij must be strictly positive numbers, 
and the output functions &(z;) must be monotonically in- 
creasing (i.e. d,!(zi) > 0). From equation ( 6 )  it is apparent 
that the gradient V,V(u) is 

VuV(u)= 

1711 1 
2 A 1 1  
--cl1 - ~d l ( " l )d l ( " l )  

It can be seen from equation (8) that there are two 
classes of networks whose gradient potential function is 
given by equation (6) which have gradient-like dynamics. 
The first class are those systems in which the weight ma- 
trix C learned by the Hebbian rule is symmetric. This 
will occur if the matrices I' and A are symmetric, and the 
initial conditions for q j  and cji are the same. A reason- 
able physical interpretation of this situation is that there is 
a single bidirectional link between any two nodes, rather 
than two unidirectional ones. The second class are net- 
works in which the learned weight matrix C is asymmet- 
ric, but only the symmetric part of the weight matrix is 
used to calculate the node activations z. It is shown in [7] 
that this treatment can be extended to incorporate anti- 
Hebbian learning [3], higher order networks [4, 111, and 
multiplicative node activation dynamics [6]. 

Network Example 

In this section we will present simulation results for a 3- 
layer recurrent neural network. The simulations will be 
used to illustrate the way in which the various properties 
of gradient-like systems appear in the dynamical behavior 
of the network. The network that will be simulated is 
illustrated in Figure 1 .  The output functions in all cases 

1 I 
Figure 1: Configuration of example network 

are &(zi) = tanh(3zi). First results will be shown for a 
network in which the learned connections are symmetric. 
For the simulation results which follow, the values of the 
parameters in equations (3) and (4) and the network inputs 
are 

for a = 1, ... I 5 and i, j E (1, ... ,5}, The fact that the 
learned connections weights are symmetric at all time val- 
ues is best illustrated by a plot of complementary weight 
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values (i.e. c;j and cji) versus time. The qualitative fea- 
tures of the dynamic behavior are best seen in a cross 
section of the phase space. Two representative plots of 
this type are shown in Figure 2. In the illustrated portion 

State States  versus t i m e  
1°1 

2 

0 2 4 6 8 lotime 

Phase space cross  sect ian 

V a l u e  of state c 3 1  

Figure 2: Phase and time plots when the learned connec- 
tions are symmetric 

of the phase space, this network converges to  one of four 
stable equilibria depending on the initial conditions. 

Next results will be shown for a network in which the 
learned connections are asymmetric but only the symmet- 
ric part of the weights is used to  calculate the node ac- 
tivation values. The network parameters are the same as 
those in equation ( 9 )  except for 

-yi, = 2, for i < j ,  
X i j  = 5, for i < j, 

-y,j = 4, for i > j; 
X i j  = 3, for i > j. (10) 

Two representative plots of the complementary weights 
versus time and phase space cross section for this case are 
shown in Figure 3. Note that in this case there are only two 
stable equilibria in the same cross section of phase space 
as in the symmetric example. By allowing the learned 
weights to be asymmetric the number of equilibrium points 
as well as their location can be controlled. In addition, 
which trajectories approach a given equilibrium point can 
be modified in this way. Most importantly these results 
can be achieved with sacrificing the convergent properties 
of the network. 

staE S t a t e s  versus t i m a  

Weight  c 3 1  
Weight  c l 3  

0 2 4 6 8 lotime 

Phase .%Dace cross  s e c t i o n  

V a l u e  of state c 3 1  

Figure 3: Phase and time plots when the learned connec- 
tionca are asymmetric 

Conclusion 

The example in the last section shows that in principle it is 
possible to  control the number, location, and region of at- 
traction of the equilibrium points in a neural network with- 
out losing the convergence properties of the system. This 
can be accomplished by allowing the connections weights 
to  be asymmetric while using only the symmetric part of 
the weights to  calculate the node activation values. This is 
possible because the networks that have been considered 
have gradient-like dynamics to  spite having asymmetric 
connections. 
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